Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
documentation [2017/12/21 16:02]
claudia
documentation [2019/12/23 23:17]
admin
Line 1: Line 1:
-{{::​libradtran.pdf|}}=== Main documentation of libRadtran ===+=== Main documentation of libRadtran ===
  
-    * Documentation for [[http://​www.libradtran.org/​doc/​libradtran.pdf|version 2.0 in pdf]] format, also included in the package (libRadtran/​doc/​libRadtran.pdf).+    * Documentation for [[http://​www.libradtran.org/​doc/​libradtran.pdf|version 2.0.3 in pdf]] format, also included in the package (libRadtran/​doc/​libRadtran.pdf).
     * A few words on the basic usage of the package can be found [[:basic usage|here]].     * A few words on the basic usage of the package can be found [[:basic usage|here]].
  
  
     ​     ​
-=== libRadtran ​Publications ​===+=== libRadtran ​publications ​===
  
-The two reference publications ​**provide an overview of libRadtran and examples of use**:+The two reference publications provide an **overview of libRadtran and examples of use**:
  
   * C. Emde, R. Buras-Schnell,​ A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro. **The libradtran software package for radiative transfer calculations (version 2.0.1).** //​Geoscientific Model Development//,​ 9(5):​1647-1672,​ 2016, [[http://​www.geosci-model-dev.net/​9/​1647/​2016/​|link]]   * C. Emde, R. Buras-Schnell,​ A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro. **The libradtran software package for radiative transfer calculations (version 2.0.1).** //​Geoscientific Model Development//,​ 9(5):​1647-1672,​ 2016, [[http://​www.geosci-model-dev.net/​9/​1647/​2016/​|link]]
Line 17: Line 17:
 The **absorption parameterization REPTRAN** (default in libRadtran) is described in:  The **absorption parameterization REPTRAN** (default in libRadtran) is described in: 
    
-  *  J. Gasteiger, C. Emde, B. Mayer, R. Buras, S.A. Buehler, and O. Lemke. **Representative wavelengths absorption parameterization applied to satellite channels and spectral bands.** //J. Quant. Spectrosc. Radiat. Transfer//, 148(0):​99-115,​ 2014, [[http://​www.sciencedirect.com/​science/​article/​pii/​S0022407314002842|link]].+  *  J. Gasteiger, C. Emde, B. Mayer, R. Buras, S.A. Buehler, and O. Lemke. **Representative wavelengths absorption parameterization applied to satellite channels and spectral bands.** //J. Quant. Spectrosc. Radiat. Transfer//, 148(0):​99-115,​ 2014, [[http://​www.sciencedirect.com/​science/​article/​pii/​S0022407314002842|link]],​{{::​reptran_paper_preprint.pdf|preprint}}
  
 +Updates included into the **default radiative transfer solver DISORT** (C-Version of DISORT with improved intensity correction method) are described in:
  
-There are various publications related to **Monte Carlo solver MYSTIC** (1D version available in the public version of libRadtran): +  ​R. Buras, T. Dowling, and C. Emde. **New secondary-scattering correction in DISORT with increased efficiency for forward scattering.** //J. Quant. Spectrosc. Radiat. Transfer//, 112(12):2028-2034, 2011. [[https://​doi.org/​10.1016/​j.jqsrt.2011.03.019|link]].
  
-  ​B. Mayer. ​**Radiative transfer ​in the cloudy atmosphere.** //European Physical Journal Conferences//,​ 1:75-99, 2009. [[http://​www.epj-conferences.org/​articles/​epjconf/​abs/​2009/​01/​epjconf1008/​epjconf1008.html|link]]+The tool to calculate line-by-line absorption coefficients ​**py4CAtS** (PYthon for Computational ATmospheric Spectroscopy) is described ​in: 
  
-  * CEmdeRBurasBMayer, and MBlumthaler. **The impact of aerosols on polarized sky radiance: model development,​ validation, and applications.** //AtmosChem. Phys.//, 10, 383-396, 2010. [[http://www.atmos-chem-phys.net/10/383/2010/acp-10-383-2010.html|link]]+  * FSchreierSGimeno GarcíaPHochstaffl, and SStädt. **Py4CAtS—PYthon for Computational ATmospheric Spectroscopy**. Atmosphere 2019, 10, 262. [[https://www.mdpi.com/​2073-4433/10/5/262/htm|link]]
  
-  ​R. Buras and B. Mayer. ​**Efficient unbiased variance reduction techniques for Monte Carlo simulations of radiative transfer ​in cloudy atmospheres: ​the solution.** //J. Quant. Spectrosc. Radiat. Transfer//, 112, 434-447, 2011. [[http://​www.sciencedirect.com/​science/​article/​pii/​S0022407311001373|link]]+There are various publications related to the **Monte Carlo solver MYSTIC** (1D version available ​in the public version of libRadtran):
  
-  * CEmde, RBuras, R., and B. Mayer. **ALISAn efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach.** //JQuantSpectroscRadiat. Transfer//, 112, 1622-16312011. [[http://​www.sciencedirect.com/science/article/pii/S0022407311001373|link]] +  * //General overview:// BMayer**Radiative transfer in the cloudy atmosphere.** //European Physical Journal Conferences//​1:75-99, 2009. [[http://​www.epj-conferences.org/​articles/​epjconf/​abs/​2009/​01/​epjconf1008/​epjconf1008.html|link]] 
-  ​+     
 +  * //Spherical geometry:// C. Emde and B. Mayer. **Simulation of solar radiation during a total eclipsea challenge for radiative transfer.** //AtmosChemPhys.//, 7:2259-2270May 2007. [[http://​www.atmos-chem-phys.net/7/2259/2007/|link]]
  
 +  * //​Polarization://​ C. Emde, R. Buras, B. Mayer, and M. Blumthaler. **The impact of aerosols on polarized sky radiance: model development,​ validation, and applications.** //Atmos. Chem. Phys.//, 10, 383-396, 2010. [[http://​www.atmos-chem-phys.net/​10/​383/​2010/​acp-10-383-2010.html|link]]
 +
 +  * //​Topography://​ B. Mayer, S.W. Hoch, and C.D. Whiteman. **Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona'​s Meteor Crater.** //Atmos. Chem. Phys.//, 10, 8685-8696, 2010. [[https://​www.atmos-chem-phys.net/​10/​8685/​2010/​|link]]
 +
 +  * //Variance reduction methods:// R. Buras and B. Mayer. **Efficient unbiased variance reduction techniques for Monte Carlo simulations of radiative transfer in cloudy atmospheres:​ the solution.** //J. Quant. Spectrosc. Radiat. Transfer//, 112, 434-447, 2011. [[http://​www.sciencedirect.com/​science/​article/​pii/​S0022407311001373|link]]
 +
 +  * //Efficient spectral calculations://​ C. Emde, R. Buras, R., and B. Mayer. **ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach.** //J. Quant. Spectrosc. Radiat. Transfer//, 112, 1622-1631, 2011. [[http://​www.sciencedirect.com/​science/​article/​pii/​S0022407311001373|link]]
 +  ​
 +  * //Thermal heating and cooling rates:// C. Klinger and B. Mayer. **Three-dimensional Monte Carlo calculation of atmospheric thermal heating rates.** , //J. Quant. Spectrosc. Radiat. Transfer//, 144:​123--136,​ 2014. [[https://​www.sciencedirect.com/​science/​article/​pii/​S0022407314001642|link]]
  
-=== To do list ===+=== libRadtran development ​===
  
 +If you want to contribute to further development of libRadtran please contact the libRadtran developers.
  
-If you want to contribute to further development of libRadtran some ideas are provided in the [[:​documentation:​todo|TODO]] file. 
  
  
  
    
 
 
documentation.txt · Last modified: 2020/12/23 23:18 by admin
Recent changes RSS feed Creative Commons License Valid XHTML 1.0 Valid CSS Driven by DokuWiki
Drupal Garland Theme for Dokuwiki