Main documentation of libRadtran

  • Documentation for version 2.0.4 in pdf format, also included in the package (libRadtran/doc/libRadtran.pdf).
  • A few words on the basic usage of the package can be found here.

libRadtran publications

The two reference publications provide an overview of libRadtran and examples of use:

  • C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro. The libradtran software package for radiative transfer calculations (version 2.0.1). Geoscientific Model Development, 9(5):1647-1672, 2016, link
  • B. Mayer and A. Kylling. Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. Atmos. Chem. Phys., 5: 1855-1877, 2005, link

The absorption parameterization REPTRAN (default in libRadtran) is described in:

  • J. Gasteiger, C. Emde, B. Mayer, R. Buras, S.A. Buehler, and O. Lemke. Representative wavelengths absorption parameterization applied to satellite channels and spectral bands. J. Quant. Spectrosc. Radiat. Transfer, 148(0):99-115, 2014, link,preprint

Updates included into the default radiative transfer solver DISORT (C-Version of DISORT with improved intensity correction method) are described in:

  • R. Buras, T. Dowling, and C. Emde. New secondary-scattering correction in DISORT with increased efficiency for forward scattering. J. Quant. Spectrosc. Radiat. Transfer, 112(12):2028-2034, 2011. link.

The tool to calculate line-by-line absorption coefficients py4CAtS (PYthon for Computational ATmospheric Spectroscopy) is described in:

  • F. Schreier, S. Gimeno García, P. Hochstaffl, and S. Städt. Py4CAtS—PYthon for Computational ATmospheric Spectroscopy. Atmosphere 2019, 10, 262. link

There are various publications related to the Monte Carlo solver MYSTIC (1D version available in the public version of libRadtran):

  • General overview: B. Mayer. Radiative transfer in the cloudy atmosphere. European Physical Journal Conferences, 1:75-99, 2009. link
  • Spherical geometry: C. Emde and B. Mayer. Simulation of solar radiation during a total eclipse: a challenge for radiative transfer. Atmos. Chem. Phys., 7:2259-2270, May 2007. link
  • Polarization: C. Emde, R. Buras, B. Mayer, and M. Blumthaler. The impact of aerosols on polarized sky radiance: model development, validation, and applications. Atmos. Chem. Phys., 10, 383-396, 2010. link
  • Topography: B. Mayer, S.W. Hoch, and C.D. Whiteman. Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona's Meteor Crater. Atmos. Chem. Phys., 10, 8685-8696, 2010. link
  • Variance reduction methods: R. Buras and B. Mayer. Efficient unbiased variance reduction techniques for Monte Carlo simulations of radiative transfer in cloudy atmospheres: the solution. J. Quant. Spectrosc. Radiat. Transfer, 112, 434-447, 2011. link
  • Efficient spectral calculations: C. Emde, R. Buras, R., and B. Mayer. ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach. J. Quant. Spectrosc. Radiat. Transfer, 112, 1622-1631, 2011. link
  • Thermal heating and cooling rates: C. Klinger and B. Mayer. Three-dimensional Monte Carlo calculation of atmospheric thermal heating rates. , J. Quant. Spectrosc. Radiat. Transfer, 144:123–136, 2014. link

libRadtran development

If you want to contribute to further development of libRadtran please contact the libRadtran developers.

documentation.txt · Last modified: 2020/12/23 23:18 by admin
Recent changes RSS feed Creative Commons License Valid XHTML 1.0 Valid CSS Driven by DokuWiki
Drupal Garland Theme for Dokuwiki